Example-driven Interconnect Synthesis for Heterogeneous Coarse-Grain Reconfigurable Logic

Clifford Wolf, Johann Glaser, Florian Schupfer, Jan Haase, Christoph Grimm
Overview

- Ultra-Low-Power Electronics
- Reconfigurable Modules
 - Structure
 - TR-FSM
 - Design of Reconfigurable Modules
- Interconnect Generation
 - Interconnect Topology
 - Optimization Algorithm
 - Evaluation Results
- Full Design Flow
- Summary
Ultra-Low-Power Electronics

- Application: WSN Node in a SoC
- CPU as Master
- Sleep, Wakeup
- Offload-Engines
- Multiple Modules
- Reconfigurable
 - Various Applications
 - Adapt to Environment
Reconfigurable Logic

- Development
 - Pre-Silicon vs. Post-Silicon
- Fine-Grain vs. Coarse-Grain
- Heterogeneous
- Domain Specific
 - Application Class

Diagram:
- Reconfigurable Circuit
 - Pre-Silicon
 - Post-Silicon
 - Manufacturing
 - Application 1
 - Bitstream
 - Application n
 - Bitstream
Structure

- Interface
- FSM+D
 - Control, Data, Arithmetic
- Cell Types
 - FSM
 - Memory
 - Add, Subtract, |A-B|, ...
- Reconfigurable
 - Routing
 - Cells
Transition-based Reconfigurable FSM

- Reconfigurable Cell
- Focus on Transition
- Transition Row
 - SSG: State Selection Gate
 - ISM: Input Switching Matrix
 - IPG: Input Pattern Gate
 - NSR: Next State Register
- VHDL
- Silicon-proven
Design

- Pre-Silicon Phase
- Define Application Class
- Specify Example Applications
- “Common Denominator”
- Pre-Silicon limits
- Post-Silicon Design Space
- Future Applications
 - Might need more Resources
- Oversizing
 - Additional Cell Instances
 - Allow more Connections
Connection Topology

- **Connection Types**
 - e.g. Bit, Byte, Word

- **Requirements**
 - Random Connections
 - Simple Characterization
 - Allow Optimization
 - Limit Optimization
 - Oversizing
 - Synthesizable

Tree Topology

- **Parallel Trees**
 - All Ports in all Trees
 - Alternate Position
 - Routing in any Tree
InterSynth: Overview

- Automatic Interconnect Generation and Optimization

- Pre-Silicon
 - Input
 - Example Netlists
 - Cell Types
 - Connection Types
 - Output
 - Synthesizable RTL Code
 - Configuration Bitstreams
 - Static Timing Analysis Rules
 - LaTeX TikZ Image
 - Internal Representation

- Post-Silicon
 - Input
 - Internal Representation
 - Netlist
 - Output
 - Configuration Bitstream
InterSynth: Algorithm

- Degrees of Freedom
 - Number of Cells per Type
 - Interconnect Resources
 - Mapping of Cells in Netlist (“Nodes”) to Physical Cells
 - Placement of Physical Cells in Interconnect Tree

- Optimization Steps
 - Optimize Cell Placement
 - Node-to-Cell Mapping
 - Repeat Until no Further Improvement

- Optimization Algorithm
 - Modified Kernighan-Lin algorithm

- Optimization Goal
 - Minimize Interconnect Resources
Digital Filters

- Application Class
 - Simple Digital Filters
 - Cell Types
 - Adders
 - Scalers
 - Delays
 - Netlists for Pre-Silicon
 - biquad-df2
 - fir4-df1
 - fir4-df2
 - Extra Netlist for Post-Silicon
 - biquad-df1
 - 2 Parallel Interconnect Trees
Digital Filters Example

- Post-Silicon
- Netlist: biquad-df1
Digital Filters Example

- Higher Order Filters
 - Combine two Stages
 - 16 different Netlists
 - Pre-Silicon: 2-4 Examples enough
Full Design Flow

- Pre-Silicon Phase
- After InterSynth
 - Synthesizable HDL
 - Instantiate Cells
 - Reconfigurable Routing
 - SoC Integration
 - Synthesis
 - Place and Route
 - Chip
- Input of InterSynth
 - Example Netlists
 - Cell Library
Full Design Flow

- **Specification**
 - Easy to translate to netlist
 - No new type of description
 - Verifiable
 ➔ VHDL, Verilog

- **Special Synthesis**
 - Coarse Grain
 - Identify Cells
 - FSM Extraction
 - Bitstream Generation
yosys

- Yosys Open SYnthesis Suite
- Extensible RTL Synthesis
- Verilog (VHDL will follow)
- Coarse-grain and Fine-grain
- Focus on easy extensibility
 - Preserve HDL Information
 - Structure
 - Frontend
 - Multiple Passes
 - Backend
- Currently under development
yosys

- Abstract HDL Constructs
- RTLIL
 - RTL Intermediate Language
 - Simple Internal Representation
 - Modified by Synthesis Passes
- Passes
 - Transformation of High-Level Constructs to Low-Level Constructs
 - Optimization
 - Coarse-Grain Mapping
Full Design Flow

- Example Applications
- Coarse Grain Synthesis
- Cell Library
- Verification
 - Simulation
 - Equivalence Checking
 - Wrapper
 - Configuration
- Pre-Silicon
- Post-Silicon

Flow Diagram

- **Sim**
- **yosys** → Coarse-Grain Mapping
- **Net-list 1**
- **Net-list 2**
- **Net-list 3**
- **Cell Library**
- **InterSynth**
- **Synthesis**
- **P&R**
- **SoC**
Summary

- Ultra-Low-Power Electronics
- CPU Offload-Engines
- Reconfigurable Modules
- Interconnect Generation
- Coarse-Grain Synthesis
- Full Design Flow

Future Work

- yosys VHDL Frontend
- More on Coarse-Grain Synthesis